Examples of results obtained with instrumentation at NeCEN can be found in publications below.


  • Yang W, et al. & Briegel A, Baseplate variability of Vibrio choleraechemoreceptor arrays. PNAS (2018)

  • Cai S, et al. & Gan L, Cryo-ET reveals the macromolecular reorganization of S. pombe mitotic chromosomes in vivo. PNAS (2018)

  • Gatsogiannis C, et al. & Raunser S, Tc toxin activation requires unfolding and refolding of a β-propeller. Nature (2018) doi: 10.1038/s41586-018-0556-6

  • Thomas B, et al. & de Groot HJM, A Molecular Level Approach To Elucidate the Supramolecular Packing of Light‐Harvesting Antenna Systems. Chemistry (2018) doi: 10.1002/chem.201802288

  • Stanishneva-Konovalova TB, et al. & Kurochkina LP, Cryo-EM Structure of the Single-Ring Chaperonin from Bacteriophage OBP P. fluorescence. Microscopy and Microanalysis (2018) doi:10.1017/S1431927618006700 

  • Jackson VA, et al., & Seiradake E, Structures of teneurin adhesion receptors reveal an ancient fold for cell-cell interaction. Nature Communications (2018) doi: 10.1038/s41467-018-03460-0

  • Garcia-Nafria J, et al. & Tate CG, Cryo-EM structure of the serotonin 5-HT1B receptor coupled to heterotrimeric Go. Nature (2018) doi: 10.1038/s41586-018-0241-9

  • Ugurlar D, et al. & Gros P, Structures of C1-IgG1 provide insights into how danger pattern recognition activates complement. Science (2018) doi:10.1126/science.aao4988


  • Abid Ali F, et al. & Costa A, Cryo-EM Structure of a Licensed DNA Replication Origin. Nature Commmunications (2017) doi:10.1038/s41467-017-02389-0
  • Mosalaganti S, et al. & Musacchio A, Structure of the RZZ Complex and Molecular Basis of its Interaction with Spindly. Journal of Cell Biology (2017) doi:10.1083/jcb.201611060
  • Hesketh EL, et al. & Ranson NA, The Structures of a Naturally Empty Cowpea Mosaic Virus Particle and its Genome-Containing Counterpart by Cryo-Electron Microscopy. Scientific Reports (2017) doi:10.1038/s41598-017-00533-w
  • Clabbers MTB, et al. & Abrahams JP, Protein Structure Determination by Electron Diffraction Using a Single Three-Dimensional Nanocrystal. Acta Crystallographica Section D Biological Crystallography (2017) doi:10.1107/S2059798317010348
  • Thomas B, et al. & de Groot HJM, Determination of Controlled Self-Assembly of a Paracrystalline Material by Homology Modelling with Hybrid NMR and TEM. Chemistry (2017) doi:10.1002/chem.201701172
  • Sundaramoorthy R, et al. & Owen-Hughes T, Structural Reorganization of the Chromatin Remodeling Enzyme Chd1 Upon Engagement with Nucleosomes. eLIFE (2017) doi:10.7554/eLife.22510
  • Franken LE, et al. & Guskov A, A General Mechanism of Ribosome Dimerization Revealed by Single-Particle Cryo-Electron Microscopy. Nature Communications (2017) doi:10.1038/s41467-017-00718-x
  • Bilokapic A, Strauss M & Halic M, Histone Octamer rearranges to adapt to DNA Unwrapping. Nature Communications (2017) doi:10.1038/s41594-017-0005-5
  • Arenz S, et al. & Wilson DN, A Combined Cryo-EM and Molecular Dynamics Approach Reveals the Mechanism of ErmBL-mediated Translation Arrest. Nature Communications (2017) doi:1038/ncomms12026
  • Zamora M, et al. & Valle M, Potyvirus Virion Structure Shows Conserved Protein Fold and RNA Binding Site in ssRNA Viruses. Science Advances (2017) doi:10.1126/sciadv.aao2182

  • Haglin ER, et al. & Thompson LK, His-Tag Mediated Dimerization of Chemoreceptors Leads to Assembly of Functional Nanoarrays. Biochemistry (2017) doi:10.1021/acs.biochem.7b00698

  • Afanasyev P, et al. & van Heel M, Single-Particle Cryo-EM Alignment by Classification (ABC): The Structure of Lumbricus terrestris Haemoglobin. IUCrJ (2017) doi:10.1107/S2052252517010922

  • Alewijnse B, et al. & Potter CS, Best Practices for Managing Large CryoEM Facilities. Journal of Structural Biology (2017) doi:10.1016/j.jsb.2017.07.011

  • Van Bezouwen L, et al. Boekema EJ, Subunit and Chlorophyll Organization of the Plant Photosystem II Supercomplex. Nature Plants (2017) doi:10.1038/nplants.2017.80

  • Thomas B, et al. & de Groot HJM, A Hybrid Solid State NMR and Electron Microscopy Structure Determination Protocol for Engineering Advanced Para-crystalline Optical Materials. Chemistry A European Journal (2017) doi:10.1002/chem.201700324


  • Iacovache I, et al., Cryo-EM Structure of Aerolysin Variants Reveals a Novel Protein Fold and the Pore-Formation Process. Nature Communications (2016)  doi:10.1038/ncomms12062

  • Arenz S, et al., A Combined Cryo-EM and Molecular Dynamics Approach Reveals the Mechanism of ErmBL-Mediated Translation Arrest. Nature Communications (2016) doi:10.1038/ncomms12026 

  • Sobti M, et al., Cryo-EM Structures of the Autoinhibited E. coli ATP Synthase in Three Rotational States. eLIFE (2016) doi:10.7554/eLife.21598

  • Coureux PD, et al.Cryo-EM Study of Start Codon Selection During Archaeal Translation Initiation. Nature Communications (2016) doi:10.1038/ncomms13366

  • Sharp TH, et al.Imaging Complement by Phase-Plate Cryo-Electron Tomography from Initiation to Pore Formation. Journal of Structural Biology (2016) doi:10.1016/j.jsb.2016.09.008

  • Vazquez-Fernandez E, et al.The Structural Architecture of an Infectious Mammalian Prion using Electron Cryomicroscopy. PLOS Pathogens (2016) doi:10.1371/journal.ppat.1005835

  • Van Heel M, et al., Multivariate Statistical Analysis of Large Datasets: Single Particle Electron Microscopy.  Open Journal of Statistics (2016) doi:10.4236/ojs.2016.64059

  • Iacovache I, et al.Cryo-EM Structure of Aerolysin Variants Reveals a novel Protein Fold and the Pore-Formation Process. Nature Communications (2016) doi:10.1038/ncomms12062

  • Larburu N, et al., Structure of a Human Pre-40S Particle Points to a Role for RACK1 in the Final Steps of 18S rRNA Processing. Nucleic Acids Research (2016) doi:10.1093/nar/gkw714

  • Shishovs M, et al.Structure of AP205 Coat Protein Reveals Circular Permutation in ssRNA Bacteriophages. Journal of Molecular Biology (2016) doi:10.1016/j.jmb.2016.08.025 

  • Koning R, et al.Asymmetric Cryo-EM Reconstruction of Phage MS2 Reveals Genome Structure in situ. Nature Communications (2016) doi:10.1038/ncomms12524

  • Stuart D, et al.The Democratization of Cryo-EM. Nature Methods (2016) doi:10.1038/nmeth.3946

  • Shakeel S, et al.Multiple Capsid-Stabilizing Interactions Revealed in a High-Resolution Structure of an Emerging Picornavirus Causing Neonatal Sepsis. Nature Communications (2016) doi:10.1038/ncomms11387

  • Von der Ecken J, et al.Cryo-EM Structure of a Human Cytoplasmic Actomyosin Complex at Near-Atomic Resolution. Nature (2016) doi:10.1038/nature18295

  • Celler K, et al.Cross-Membranes Orchestrate Compartmentalization and Morphogenesis in Streptomyces. Nature Communications (2016) doi:10.1038/ncomms11836

  • Arenz S, et al.Structures of the Orthosomycin Antibiotics Avilamycin and Evernimicin in Complex with the Bacterial 70S Ribosome. PNAS (2016) doi:10.1073/pnas.1604790113

  • Yewdall NA, et al.Structures of Human Peroxiredoxin 3 Suggest Self-Chaperoning Assembly that Maintains Catalytic State. Structure (2016) doi:10.1016/j.str.2016.04.013

  • Sharp TH, et al.Heterogeneous MAC Initiator and Pore Structures in a Lipid Bilayer by Phase-Plate Cryo-electron Tomography. Cell Reports (2016) doi:10.1016/j.celrep.2016.03.002


  • Beckert B, et al.Translational Arrest by a Prokaryotic Signal Recognition Particle is Mediated by RNA Interactions. Nature Structural and Molecular Biology (2015) doi:10.1038/nsmb.3086

  • Diebolder CA, et al.Cryoelectron Tomography of the NAIP5/NLRC4 Inflammasome: Implications for NLR Activation. Structure (2015) doi:10.1016/j.str.2015.10.001

  • Efremov RG, et al.Architecture and Conformational Switch Mechanism of the Ryanodine Receptor. Nature (2015) doi:10.1038/nature13916

  • Von der Ecken J, et al.Structure of the F-Actin-Tropomyosin Complex. Nature (2015) doi:10.1038/nature14033

  • Afanasyev P, et al.A posteriori Correction of Camera Characteristics from Large Image Data Sets. Scientific Reports (2015) doi:10.1038/srep10317

  • Maskell DP, et al.Structural Basis for Retroviral Integration into Nucleosomes. Nature (2015) doi:10.1038/nature14495

  • Sohmen D, et al.Structure of the Bacillus subtilis 70S Ribosome Reveals the Basis for Species-Specific Stalling. Nature Communications (2015) doi:10.1038/ncomms7941

  • Arenz S, et al.Cryo-EM Structure of the Tetracycline Resistance Protein TetM in Complex with a Translating Ribosome at 3.9Å Resolution. PNAS (2015) doi:10.1073/pnas.1501775112


  • Voortman LM, et al.Quantifying Resolution Limiting Factors in Subtomogram Averaged Cryo-Electron Tomography Using Simulations. Journal of Structural Biology (2014) doi:10.1016/j.jsb.2014.06.007

  • Diebolder CA, et al.Complement is Activated by IgG Hexamers Assembled at the Cell Surface. Science (2014) doi:10.1126/science.1248943

  • Bischoff L, et al.Molecular Basis for the Ribosome Functioning as an L-Tryptophan Sensor. Cell Reports (2014) doi:10.1016/j.celrep.2014.09.011

  • Arenz S, et al.Drug Sensing by the Ribosome Induces Translational Arrest via Active Site Perturbation. Molecular Cell (2014) doi:10.1016/j.molcel.2014.09.014


  • Nederlof I, et al.Imaging Protein Three-Dimensional Nanocrystals with Cryo-EM. Acta Crystallographica Section D Biological Crystallography (2013) doi:10.1107/S0907444913002734

  • Vulovic M, et al.Image Formation Modeling in Cryo-Electron Microscopy. Journal of Structural Biology (2013) doi:10.1016/j.jsb.2013.05.008