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Data pre-processing, the old
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Acquisition
Automated in SerialEM, EPU

Automated in Warp, =40 s per item, results updated continuously as new data arrive
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Semi-automated in cryoSPARC
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Modeling sample deformation
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Deep learning-based picking: BoxNet

* Fully convolutional U-Net with residual blocks
* Pre-trained on 26 hand-picked data sets
* Easily retrainable within Warp

e Save and manage retrained models for projects
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With EMPIAR-10061

Warp + RELION: 2.09 A
+ Beam tilt: 1.95 A

+ Defocus: 1.95 A

+ Polishing: 1.86 A
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With EMPIAR-10097

Original data,
manual processing

Warp pipeline,
automated

0.143

Local resolution

Fourier shell correlation

Full Warp pipeline
Original set, best class + Warp CTF
Original set, best class
Original set
EMPIAR-10097 half-maps
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Get it at warpem.com!



Denoising with deep neural nets
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Noise2Noise: Learning Image Restoration without Clean Data

Jaakko Lehtinen'? Jacob Munkberg' Jon Hasselgren
Timo Aila '

Abstract

We apply basic statistical reasoning to signal re-
construction by machine learning — learning to
map corrupted observations to clean signals —
with a simple and powerful conclusion: under
certain common circumstances, it is possible to
learn to restore signals without ever observing
clean ones, at performance close or equal to train-
ing using clean exemplars. We show applications
in photographic noise removal, denoising of syn-
thetic Monte Carlo images, and reconstruction of
MRI scans from undersampled inputs, all based
on only observing corrupted data.

1. Introduction

Signal reconstruction from corrupted or incomplete mea-
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' Samuli Laine' Tero Karras' Miika Aittala’

have been reported in several applications, including Gaus-
sian denoising, de-JPEG, text removal (Mao et al., 2016),
super-resolution (Ledig et al., 2017), colorization (Zhang
et al., 2016), and image inpainting (lizuka et al., 2017). Yet,
obtaining clean training targets is often difficult or tedious.
A noise-free photograph requires a long exposure; full MRI
sampling is slow enough to preclude dynamic subjects, etc.

In this work, we observe that under suitable, common cir-
cumstances, we can learn to reconstruct signals from only
corrupted examples, without ever observing clean signals,
and often do this just as well as if we were using clean ex-
amples. As we show below, our conclusion is almost trivial
from a statistical perspective, but in practice, it significantly
eases learning signal reconstruction by lifting requirements
on the availability of clean data.

2. Theoretical background

Aconmma that wa hauva a cat af iinraliahla meaacnramante
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Denoising: 2D (0.8 um defocus



Denoising: 3D halt-maps
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Where do we want to go?
Tomography.



Ben Engel













Previous results for cryo-FIBed in situ




Similar in situ data with Warp




Implications for data processing and sharing

* Every tomogram needs as many identified particles as possible
 Every particle species needs as many copies as possible

* Every in situ tomogram contains less than 1 particle of interest per lab
e ... and 10 000+ particles of interest for other labs

* Everyone‘s resolution increases as more particles are added

* No single lab/facility will be able to produce enough data



Thanks to: Data from: warpem.com

Patrick Cramer EMPIAR github.com/dtegunov
Ben Engel twitter.com/dtegunov
Carrie Bernecky
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